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Abstract

In a web system, configuration is crucial to the per-
formance and service availability. It is a challenge, not
only because of the dynamics of Internet traffic, but also
the dynamic virtual machine environment the system tends
to be run on. In this paper, we propose a reinforcement
learning approach for autonomic configuration and recon-
figuration of multi-tier web systems. It is able to adapt
performance parameter settings not only to the change
of workload, but also to the change of virtual machine
configurations. The RL approach is enhanced with an
efficient initialization policy to reduce the learning time
for online decision. The approach is evaluated using TPC-
W benchmark on a three-tier website hosted on a Xen-
based virtual machine environment. Experiment results
demonstrate that the approach can auto-configure the web
system dynamically in response to the change in both
workload and VM resource. It can drive the system into
a near-optimal configuration setting in less than 25 trial-
and-error iterations.

I. Introduction

Web systems like Apache and Tomcat applications often
contain a large number of parameters to be configured
when they are deployed and the parameter settings are
crucial to systems performance and service availability. For
example, an incorrect setting of the MaxClient param-
eter in Apache may even cap the throughput of a large-
scale server. Traditionally, a web system configuration is
performed manually, based on operator’s experience. This
is a non-trivial and error-prone task. Recent human factor
studies on root causes of Internet service outages revealed
that more than 50% was due to system misconfiguration
caused by operator mistakes [6].

The configuration challenge is due to a number of
reasons. First is the increasing system scale and com-
plexity that introduce more and more configurable pa-
rameters to a level beyond the capacity of an average-

skilled operator. For example, the latest version of an
Apache server has more than 240 configurable parameters
that relate to performance, support files, server structure,
and required modules. Likewise, a Tomcat server con-
tains more than a hundred parameters to set for different
running environments. In a multi-component system, the
interaction between the components makes performance
tuning of the parameters even harder. In a multi-tier web
system, a misconfiguration in one tier may cause mis-
configurations in the others. Performance optimization of
individual component does not necessarily lead to overall
system perfomance improvement [2]. Therefore, to find
an appropriate configuration, the operator must develop
adequate knowledge about the system, get familiar with
each of its configurable parameter, and run numerous trail-
and-error tests.

Another challenge in configuration comes from the
dynamic trait of web systems. On the Internet, the systems
should be able to accommodate a wide variety of service
demands and frequent component in both software and
hardware. Chung et al. [2] showed that in web system no
single universal configuration is good for all workloads.
Zheng et al. [19] demonstrated that in a cluster-based In-
ternet service, when the application server tier got updated,
such as adding or reducing the number of application
servers, the system configuration should be modified to
adjust to this evolution.

Moreover, virtual machine technology and related utility
and cloud computing models pose new challenges in web
system configuration. VM technology enables multiple
virtualized logical machines to share hardware resources
on the same physical machine. This technology facilitates
on-demand hardware resource reallocation [11] and service
migration [3]. Next-generation enterprise data centers will
be designed in a way that all hardware resources are pooled
into a common shared infrastructure; applications share
these remote resources on demand [10], [16]. It is desirable
that the resources allocated to each VM should be ad-
justed dynamically for the provisioning of QoS guarantees
and meanwhile maximizing resource utilization [8]. This
dynamic resource allocation requirement adds one more
dimension of challenge to the configuration of web systems



hosted in virtual machines. In particular, the configuration
needs to be carried out on-line and automatically.

There were many past studies devoted to autonomic
configuration of web systems; see [17], [18], [2], [19],
[5] for examples. Most of them focused on performance
parameters tuning for dynamic workload in a static en-
vironment. Xi et al. [17] and Zhang [18] used hill-
climbing algorithms to search the best settings for a small
number of key parameters in application servers. Chung
and Hollingsworth [2] and Zheng et al. [19] suggested to
construct performance functions of configurable parame-
ters in a direct approach so as to tune the parameters by
optimizing the functions. Because of the time complexity
of their optimization approaches, they are not applicable
to online setting of the parameters in VM-based dynamic
platforms. In [5], Liu et al. proposed a fuzzy control
approach to adaptively reconfigure Apache Web server to
optimize response time. It was targeted at online tuning in
responses to changing workload. However, because of the
inherent complexity of the control approach, it was limited
to the tuning of single MaxClient parameter.

In this paper, we propose a reinforcement learning ap-
proach, namely RAC, for automatic configuration of multi-
tier web systems in VM-based dynamic environments.
Reinforcement learning is a process of learning from
interactions. For a web system, its possible configurations
form a state space. We define actions as reconfiguration
of the parameters. Reinforcement learning is intended to
determine appropriate actions at each state to maximize
the long-term reward. Recent studies showed the feasibility
of RL approaches in resource allocation [13], [15], power
management [14], job scheduling in grid [1] and self-
optimizing memory controller [4]. To best of our knowl-
edge, the RWC approach should be the first one in the
application of the RL principle to automatic configuration
of web systems.

The RAC approach has the following features: (1) It
is applicable to multi-tier web systems where each tier
contains more than one key parameters to configure; (2)
It is able to adapt system configuration to the change
of workload in VM-based dynamic environments where
resource allocated to the system may change over time;
(3) It is able to support online auto-configuration.

Online configuration has a time efficiency requirement,
which renders conventional RL approaches impractical.
To reduce the initial learning overhead, We equip the RL
algorithm with efficient heuristic initialization policies. We
developed a prototype configuration management agent,
based on the RAC approach. The agent is non-intrusive
in the sense that it requires no change in either server or
client sides. All the information needed is application level
performance such as throughput and response time. We
experimented with the RAC agent for a three-tier TPC-
W website/benchmark on a Xen-based virtual machine
environment. Experiment results showed that the RAC
agent can auto-configure the web system dynamically in
response to the change in both workload and VM resource.

TABLE |. Tuning parameters

Configuration parameter || Candidate values | Default
MaxClients(web server) from 50 to 600 150
Keepalive timeout from 1 to 21 15
MinSpareServers from 5 to 85 5
MaxSpareServers from 15 to 95 15
MaxThreads(app server) from 50 to 600 200
Session timeout from 1 to 21 30
minSpareThreads from 5 to 85 5
maxSpareThreads from 15 to 95 50

It can drive the system into a near-optimal configuration
setting in less than 25 trial-and-error iterations.

The rest of this paper is organized as follows. Section
I presents scenarios to show the challenges in configu-
ration management in dynamic environments. Section III
presents basic idea of the RL approach and its application
in auto-configuration. Enhancement of the approach with
initialization policies is given in Section IV. Section V
gives the experimental results. Related work is discussed in
Section VI. Section VII concludes the paper with remarks
on limitations of the approach and possible future work.

II. Challenges in Website Configuration
A. Match Configuration to Workload

Application level performance of a web system heavily
depends on the characteristics of the incoming workload.
Different types of workloads may require different amounts
and different types of resources. Application configuration
must match the need of current workloads to achieve a
good performance.

For instance, MaxClients is one of the key perfor-
mance parameters in Apache, which sets the maximum
number of requests to be served simultaneously. Setting it
to a too small number would lead to low resource utiliza-
tion; in contrast, a high value may drive the system into
an overloaded state. With limited resource, how to set this
parameter should be determined by the requests resource
consumption and their arrival rates. Configurations of this
parameter for resource intensive workload may lead to
poor performance under lightly loaded conditions.

To investigate the effect of configuration on per-
formance, we conducted experiments on a three-tier
Apache/Tomcat/MySQL website. Recall Apache and Tom-
cat each has more than a hundred configuration parameters.
Based on recent reports of industry practices and our own
test results, we selected eight most performance relevant
run-time configurable parameters from different tiers, as
shown in Table I. For simplicity in testing, we assume the
default settings for the MySQL parameters.

We tested the performance performance using TPC-
W benchmark. TPC-W benchmark defines three types of
workload: ordering, shopping, and browsing, representing
three different traffic mixes. It is expected that each



Fig. 1. Performance under configurations
tuned for different workloads.

workload has its preferred configuration, under which the
system would yield the lowest average response time.
Figure 1 shows the system performance for different
workloads under the three best configurations (out of our
test cases). From the figure, we observe that there is no
single configuration suitable for all kinds of workloads. In
particular, the best configuration for shopping or browsing
would yield extremely poor performance under ordering
workload.

B. Match Configuration to Dynamic VM
Environments

For a web system hosted on VMs, its capacity is
capped by the VM resources. it tends to change with
reconfiguration of the VM (for fault tolerance, service
migration, and other purposes). The change of the VM
configuration renders the previous web system configura-
tion obsolete and hence calls for reconfiguration online.
Such reconfigurations are error prone and sometimes even
counter-intuitive.

In this following, we still use MaxClients parameter
to show the challenges due to VM resource change. In this
experiment, we kept a constant workload and dynamically
changed the VM resource allocated to the application
and database servers. We defined three levels of resource
provisioning: Level-1 (4 virtual CPUs and 4GB memory),
Level-2 (3 virtual CPUs and 3GB memory), and Level-
3 (2 virtual CPUs and 2GB memory). Figure 2. shows
the impact of MaxClients settings under different VM
configurations. From the figure, we can see that each
platform has each own preferred MaxClients setting
leading to the minimum response time. We notice that as
the capacity of the machine increases, the optimal value
of MaxClients actually goes down instead of going
up as we initially expected. The main reason for this
counter-intuitive finding is that with the VM becoming
more and more powerful, it can complete a request in
a shorter time. As a result, the number of concurrent
requests will decrease and there is no need for a large
MaxClients number. Moreover, the measured response
time included request queuing time and its processing
time. The MaxClients parameter controls the balance
between these two factors. A large value would reduce the
queueing time, but at the cost of processing time because
of the increased level of concurrency. The tradeoff between
the queuing time and processing time is heavily dependent
on the concurrent workload and hardware resource.

MaxClient aside, we tested the settings of other
parameters under different VM configurations. Their ef-
fects are sometimes counter-intuitive due to the dynamic
features of web systems. Figure 3 shows no single con-

Fig. 2. Effect of MaxClients on performance
under different VM platforms.

Fig. 3. Performance under configurations
tuned for different VM platforms.

figuration is best for all platforms. In particular, the per-
formance under Level-2 resource may even deliver better
performance under Level-1 platform.

III. Reinforcement Learning Approach to
Auto-Configuration

In this section, we will present an overview of our RL
approach and its application to auto-configuration.
Auto-

A. Parameter Selection and

Configuration

Today’s web systems often contain a large number of
configurable parameters. Not all of them are performance
relevant. For tractability of auto-configuration, we first
select the most performance-critical parameters as con-
figuration candidates. Because online reconfiguration is
intended to performance improvement at the cost of its
run-time overhead. Including a huge number of parameters
will sharply increase the online search spaces, causing a
long time delay to converge or making the system unstable.
To select an appropriate tuning parameter, we have to deal
with the tradeoff between how much the parameter affects
the performance and how much overhead it causes during
the online searching.

Even from the performance perspective, how to select
the appropriate parameters for configuration is a challenge.
In [19], authors used parameters dependency graph to find
the performance relevant parameters and the relationship
among them. Our focus in on autonomic reconfiguration
in response to system variations by adjusting a selective
group of parameters. Table I lists the parameters we
selected and the ranges of their values for testing purposes.
How to automatically select the relevant parameters is
beyond the scope of this paper.

For a selective group of parameter in different tiers,
we design a RL-based autonomic configuration agent for
multi-tier web systems. The agent consists of three key
components: performance monitor, decision maker, and
configuration controller. The performance monitor pas-
sively measure the web system performance at a predefined
time interval (we set it to 5 minutes in experiments), and
send the information to RL-based decision maker. The only
information the decision maker needs is the application
level performance such as response time or throughput.
It require no OS-level or hardware level information for



portability. The decision maker runs a RL algorithm and
produce a state-action table, called Q-value table. A state
is defined as a configuration of the selected parameters.
Possible actions include increasing, decreasing their values
or keeping unchanged; see the next section for details.
Based on the dynamically updated @ table, the config-
uration controller generates the configuration policy and
reconfigures the whole system if necessary.

B. RL-based Decision Making

Reinforcement learning is a process of learning through
interactions with an external environment (or the web sys-
tem in this paper). The reconfiguration process is typically
formulated as a finite Markov decision process(MDP),
which consists of a set of states and several actions for
each state. During each state transition, the learning agent
should receive a reward defined by a reward function
R = E[rii1lst = s,ar = a,8:.41 = §']. The goal of
the agent is to develop a policy 7 : S — A to maximize
the collected cumulative rewards based on iterative trial-
and-error interactions [12].

We first cast the online automatic configuration problem
as a MDP, by defining state space S, action set A, and
immediate reward function (s, a).

a) State Space.: For the online auto-configuration
task, we define a state as possible system configuration.
For the selective group of n parameters, we represent a
state by a vector in the form as:

s; = (Paray, Paras, - - -, Paray,).

b) Action Set.. We define three basic actions:
increase, decrease, and keep associated with each pa-
rameter. We use a vector a; to represent an action on
parameter ¢. Each element itself is a 3-element vector,
indicating taken/not-taken (1/0) of three actions. For ex-
ample, the following notation represents an increase action
on parameter .
= (-+-, Para;(1,0,0), Para,(0,0,0))

increase
i

c¢) Immediate Reward.: The immediate reward
should correctly reflect the system performance. The im-
mediate reward r at time interval t is defined as

re = SLA — perfy,

where S LA is a reference time predefined in Service Level
Agreement, and perf is measured response time. For a
given SLA, a lower response time returns a positive reward
to the agent; otherwise the agent will receive a negative
penalty.

d) Q Value Learning.: To learn the Q value of each
state, the agent should continuously update its estimation
based on the state transition and reward it receives. The
temporal difference(TD) is most suitable for our work due
to its two advantages: It needs no model of the environment
and it updates Q values at each time step based on its

estimation. Using such incremental fashion, the average Q
value of an action a on state s, denoted by Q(s, a), can be
refined once after each immediate reward r is collected:

Q(st,a¢) = Q(St, a)Fak[rp1+7+Q(St41, ar1) —Q (8¢, ar)],

where « is a learning rate parameter that facilitates con-
vergence to the true Q values in the presence of noisy
or stochastic rewards and state transitions [12], and ~
is the discount rate to guarantee the accumulated reward
convergence in continuing task. Algorithm 1 presents the
pseudo code of our Q value learning algorithm.

Algorithm 1 Q value Learning Algorithm

1: Initialize Q table

2: Initialize state s;

3: error =0

4: repeat

5. for all states s do

6: ar = get_action(s;) using € — greedy policy
7: for (step = 1;step <LIMIT;step + +) do

8: Take action a; Observe r and S;41

9: Qi = Q¢+ ax(r+7v+* Qi1 — Q)
10: error = MAX (error, |Q: — Qprevious—t|)
11: St = St+1,0¢t = At+1
12: end for
13:  end for

14: until error < 6

IV. Online Learning and Adaptation

RL algorithm explores system dynamic features and
learns the configuration policy by interacting with the
external environment. Even a basic RL algorithm can learn
by itself during online running. A practical problem with
the basic algorithm is that the number of Q values that
need to explore increases exponentially with the number
of attributes used in state representations [4]. When it is
applied to autonomic configuration, the agent would suffer
from poor performance in the initial stage, and needs a
large amount of time to converge to a good state. This time
complexity issue makes the online learning challenge.

A. Policy Initialization

The initial poor performance and poor scalability would
limit the potential of RL algorithms for online auto-
configuration. For a remedy, our RL agent assumes an
external policy initialization strategy to accelerate the
learning process. Briefly, it first samples the performance
of a small portion of typical configurations and uses these
sample data to predict the performance of other similar
configurations. Based on these information, the agent runs
another reinforcement learning process to generate an
initial policy for the online learning procedure.

A key issue is to choose representative states for approx-
imation. A tradeoff exists between the number of states to
be considered and their coverage of the states representing



Fig. 4. Concave upward effect of MaxClients
and regression.

the dynamics of the system. In implementation, we use
a technique of parameter grouping to group parameters
with similar characteristics together so as to reduce the
state space in a coarse granularity. For example, both
parameters MaxClients and MaxThreads are limited
by the system capacity and often set to the same value in
practice; they could be put in the same group. Likewise,
both parameters KeepAlive timeout and session
timeout are limited by the number of multiple connec-
tion transactions and they could be put in another group.

After having the state value of representative configura-
tions, we use a simple but efficient method to predict the
performance of pother configurations. It is based on the
fact that all parameters have a concave upward effect on
the performance, as revealed in [5]. Figure 4 shows the
concave upward effect of a single parameter MaxClient
on response time, observed in one of our experiments.
We use a polynomial regression algorithm to predict the
performance due to different settings of the parameter. Al-
gorithm 2 gives the pseudo-code of the policy initialization
algorithm.

Algorithm 2 Policy Initialization.

1: Combine MaxzClients and MaxThreads as single param-
eter Max

2: Combine KeepAlvietimeout and Sessiontimeout as sin-
gle parameter T'imeout

3: for all parameters do
4:  Collect data using coarse granularity
5:  Generate performance predictor using polynomial regres-

sion
6:  Predict absent performance values
7: end for

B. Online Learning

An appropriate policy initialization can avoid the initial
poor performance of online learning and help the system
quickly converge to a good state. It may not be accurate
enough for reconfiguration decision. In the subsequent
online learning, our agent keeps collecting the current
system performance and retraining the Q value table at
each time interval. For each retraining procedure, the
agent updates the performance information for current
configuration but still keep the old information for other
configurations. Based on these updated performance infor-
mation, it updates the Q value table so as to guarantee
that most of the states be aware of the new changes in the
system. After each retraining, the agent will then direct the
system to the next state based on the new policy derived
from the updated Q value table.

C. Adaptation to Workload and Systems
Dynamics

Recall the web system hosted in a VM-based dynamic
environment, there are two dynamic factors: the changing
of incoming workloads and VM resource variation. As we
discussed in Section II, there is no single best configuration
for all kinds of workloads and all types of VM platforms.
Each system scenario has its own favorite configuration
and the best configuration for one situation could be a
misconfiguration for the others.

To deal with the problem of poor initial performance
and to accelerate the learning process when the web
system changes from one scenario to another, we may
construct different initialization policies for different sce-
narios through offline training. Algorithm 3 shows the
online training and adaptation algorithm. The RL agent
continues to capture the state performance, i.e. immediate
reward got from this state and compares it with average
value of the measurements of past n iterations. We define
an initiation policy switching criteria to distinguish any
performance abrupt change (i.e. policy violation). If there
are k times violations happened continuously, the agent
will shift to a most suitable initial policy according to the
current performance. In implementation, we set n, k, and
the threshold as 10, 5, and 0.3, respectively.

puar = a k [rptimecy, — rptimegyer| /TotiMegver,

0 if pvar < threshold,

violation = { 1 else.

Algorithm 3 Online Learning.

1: Initialized Q table
2: Initialized state S
3: for all configuration steps do

4:  Collectcurrent performance

5:  Check violation

6: If (Numyiotations < Threshold) Shifting policy
7. UpdateQ value table using Algorithm 1

8:  Choose a: from S; using € — greedy policy

9: end for

V. Experiments Results

In this section, we evaluate the effectiveness of the RL-
based auto-configuration agent on a real multi-tier web
system running TPC-W benchmark. The application level
performance is measured by the response times.

A. Experimental Setup

To test our RL-based agent in a dynamic environment
with varying client traffic and changing resource supply,
we deployed the multi-tier website in a VM-based dynamic
environment. The host machine is with two Intel Xeon



quad-core CPUs and 8GB memory. A client machine with
the same hardware configuration was used to simulate
simultaneous customers. All devices were interconnected
by a fast Ethernet.

We used Xen version 3.1 as our virtualization en-
vironment. Both the driver domain and the VMs were
running CentOS 5.0 with Linux kernel 2.6.18. The TPC-
W benchmark [9] was installed on two VMs, with Apache
web server in the first VM and the Tomcat application
server and MySQL data base server in the other VM. The
auto-configuration agent resided in another VM.

We dynamically varied the client traffic to the website
by switching among the ordering, browsing and shopping
mixes defined by TPC-W benchmark. Only the resources
available to the VM hosting the application server and data
base server were changed due to the fact that the last two
tiers are the bottlenecks for TPC-W benchmark and affect
the selection of the values of the tuning parameter.

B. Performance of Configuration Policies

The optimization target of the RL-based agent is to
find a policy that automatically reconfigures multi-tier
website based on previous experiences. In online auto-
configuration, the agent should be able to direct the system
to a good configuration within a short period of time
without incurring performance penalty due to bad settings.
In this section, we will evaluate the performance of our
RL-based agent during online adaptation.

We compare the online performance of our RL-based
agent with other two configuration methods. The first
one is to follow the recommended default configuration,
whose parameter settings are listed in Table I. The other
is a trial-and-error method which configures the system
based on testings. In this method, the agent tuned the
parameters one by one. For one parameter, the agent started
from the default setting and tuned the parameter in both
direction (increase and decrease) until the performance
became flat or even dropped. Then, the value of the
best performance in above process was selected. The
configuration process ended when all the parameters were
tried. The method mimics the way an administrator may
use to tune the system manually. In this experiment, we
dynamically changed workload and VM resources to test
the adaptability of the agent. The traffic mix and the VM
resource provisioning level comprised the environment of
the agent and were changed randomly. Each workload
and resource combination lasted for 30 iterations. Then,
a new combination was generated. We deployed the RL-
based agent online and tested the agent’s performance by
randomly picking up three consecutive combinations. The
three cases were selected were: shopping workload under
Level 1 resource provision, ordering workload under Level
1 resource provision, and ordering workload under Level
3 resource provision. Figure 5 shows the results.

Due to no adaptation to the dynamic environment, the
static default configuration had the worst performance,

Fig. 5. Performance changes with workload
and VM resources due to different auto-
configuration policies.

Fig. 6. Agent performance with and without
online training.

whose average response times were much higher than the
other two for the majority of the time. The trial-and-error
method enumerated configurations started from the initial
parameter value. It may be trapped with local optimal
settings. From the figure, although trial-and-error can find
fair configurations in a short time, its resulted performance
is around 30% worse than the RL-based agent in terms of
response time. The RL-based agent performed best among
the three methods. It was always able to converge to a
configuration within 25 interactions with the environment
and the response times for these configuration were much
better than other methods.

In some cases, the RL-based agent became the worst
one due to policy shifting latency. For example, at the
second environment transition at the 60th iteration. The
system experienced five iterations poor performance before
the agent noticed the environment changes. Such perfor-
mance penalty can be reduced by decreasing the policy
shifting threshold, which we set to 5 times violations
in this experiment. However, setting the threshold to a
much smaller value will make the agent too sensitive to
system fluctuations. Mistaking the normal fluctuations for
environmental changes, the system could become unstable
by frequently shifting the initial policies. In our work,
our original setting of 5 worked well and several initial
iterations penalty was acceptable for the web system.

Recall that the online training and updating process will
continue through the agent’s lifetime. As the algorithm
converges to a state, the agent will direct the system to
loop at the final state but will not stop the retraining due
to the requirement of adaptations to system variations.
Figure 6 compares the agent’s performances between with
and without the online refinements. The agent without
online learning converged much faster than the agent
with online refinement because the former just used the
prelearned policy and involved no updating. Initially, the
agent with online learning suffered from the exploring new
states and updating Q values whose performance even
worse than the agent without online learning. However,
within 20 iterations, it converged to a stable configuration
whose performance was much better. This case shows that
through online learning the agent can find a much better
configuration than the initialized one.



C. Effect of Policy Initialization

The time RL algorithm needs to generate an optimal
policy increases with the size of state space exponentially
. Without an appropriate initial policy, the RL algorithm
experiences a large amount of explorations before a policy
can be obtained, which is not acceptable in online auto-
configuration. In this work, we proposed initial policies for
different specific situations to avoid the initial poor perfor-
mance and to accelerate the agent’s policy generation.

We used average response time as the application level
performance metric. Figure 7(a) and Figure 7(b) plot the
response times when the system is configured by the agent
with and without the initial policy in different resource
provisioning levels. In Figure 7(a), we evaluate the initial
policy for Level 1 resource provision with ordering work-
load. And in Figure 7(b), we evaluate the initial policy for
Level 2 resource provision with shopping workload.

For each evaluation, we run 30 iterations. In Figure 7(b),
the agent without initial policy leads the configurations to
states in which the average response time was 10 times
larger than the one with initial policy. These two figures
show the necessity of an external policy for the web system
configuration task.

Furthermore, the experiments showed the effectiveness
of the initial policies. The agents with initial policies was
able to converge to a stable state within 25 iterations. More
importantly, they both successfully avoided bad config-
urations during the process. Besides finding the optimal
configuration for the web system, the RL-based agents
reconfigure the system in a way that the configuration
process is also optimal. We can see that after 10 itera-
tions, both of the systems show a relatively low response
time because of the selection of good configurations each
iteration.

However, in a dynamic web system, it is impossible to
derive sufficient environment specific initial policies for all
the workload and resource combinations. In this section,
we show that any one of the initial policies attained for
a certain workload and resource combination can be used
throughout the online learning due to the adaptation of
the RL algorithm. We compared the performance of the
agent using only one initial policy with the case that initial
policies were changed to specific ones when environment
changed. We call the only one policy used a unified
policy and the policies selected at the transition of the
environment a specified policy.

In the experiment, we picked up the initial policy
derived from ordering workload over resource Level 1 as
the unified policy. Then the unified policy was compared
to the specified policies on two different situations. In
Situation 1, we ran ordering workload under VM resouce
Level 2 twice using its own initial policy and unified policy
separately. In Situation 2, shoppingt workload was take
under VM resource Level 1. Figure 7(c) and Figure 7(d)
plot the response times for both policies under different
situations. In both figures, initially the agent with the

Fig. 8. Performance changes with workload
and VM resouce due to different RL policies.

unified policy suffered from bad response time and large
fluctuations. After some interactions, unified policy was
gradually refined and was able to lead to good configura-
tions.

Compared with the case with no initial policy, the agent
with unified initial policy worked much better. Moreover,
after a limited number of iterations, 12 iterations in Fig-
ure 7(c) and 19 iterations in Figure 7(d), the response time
had been relatively low before the convergence.

The effectiveness of the unified initial policy was due
to the online batch updating of the )-value table and the
characteristics of web systems. During each iteration, new
collected performance information was used to retrain the
Q value table. The recent collected rewards spreed the
environment dynamics to all the states. Therefore, although
the unified initial policy can not accurately reflect the
system dynamic, the interactions between agent and the
external environment could calibrate the system mapping
within acceptable time. Moreover, for a web system, some
extreme configurations rarely happen in practice. For ex-
ample, setting the KeepAlive timeout a value higher
than 20 is always a bad decision. Because few web pages
contain so many objects requiring the TCP connection
to be kept for such a long time. The unified policy
can automatically mask the system from these extreme
configurations and avoid huge performance penalties.

We also performed experiments to compare online
adaptation performance of the three RL algorithms: the
algorithm without any initial policy, with a unified policy,
and with specified policies. We dynamically changed the
system situations the same as the previous experiments in
Section V.B. Figure 8 shows the results.

At iteration 30 and iteration 60, the system experienced
a workload change and a VM resource reallocation, re-
spectively. Our agent with specific initial policies per-
formed very well during the online adaptation. After the
workload change at iteration 30, the agent continuously
observes performance violations and starts a policy change
at iteration 35 when the number of continuous violations
exceeded the threshold. Consequently, the response time
dropped sharply after the agent got its specific initial
policy. In Figure 8, we can see that, after iteration 35,
the average response time reduced by more than 60% and
became very close to the performance of a convergent
state after iteration 46. All policy shifting and optimal
searching activities were completed within 15 iterations.
Furthermore, during the online learning process, the agent
always kept the system performance in an acceptable level.
We observed a similar good performance of our agent
when the VM resource changes when system transfer from
the second situation to the third one.
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Fig. 7. Agent performance with and without specific initialization policies.

The agent with the unified policy also worked well. In
Figure 8, we can see that its performance curve was close
to that of the specific equipped agent except suffering a
short time initial fluctuations. After each system variation,
the agent could always find a good performance state
within 20 iterations. Such generally equipped agent is
more practical and useful in real systems. It relies on
interactions with environment instead of policy shifting to
continuously update the Q values table, and assumes much
less knowledge of the dynamic system.

As we expected, the agent without any initial policy
did a terrible work. Nearly all the iterations were used
to “query” the environment because 30 iterations is far
from the time it needed for convergence. The variations
in average response time were not from the algorithm’s
adaptation but just from the system itself.

D. Effect of Exploration

In the proceeding sections, we demonstrated that our
RL based automatic configuration agent was efficient for
online system adaptations. It could drive the system into
high performance states quickly and into a stable con-
figuration within less than 30 iterations. The high time
efficiency implies the system won’t suffer the initial poor
performance for too long.

Another issue is whether the rapid convergence implies
insufficient exploration and suboptimal convergence states.
How to balance the exploration and exploitation is one of
the key issues in RL algorithms. In our work, there were
two kinds of exploration rates: one for batch training and
one for online learning. The agent keeps doing both of the
two learning procedures through lifetime.

The batch training is a part of the online learning.
During each iteration, agent updates the performance in-
formation for current state and uses batch training to
generate a latest version Q values table, based on which,
the online learning algorithm takes the action and goto next

state using € — greedy policy. Although both two learning
algorithms keep happening online, they have different
affections to the system performance. The online learning
algorithm is the one actually controlling which state the
system should enter next. The online performance is much
more sensitive to the online learning exploration rate. For
each batch training, the agent accesses different states by
reading data from reward table which come from either
initialization or online updating. During the batch training,
the agent keep the system state unchanged and wait for
updated Q values table.

The duty of batch training is to generate the Q value
table and to update the policy. And the duty of online
training is to direct the system and to collect current
information for calibrating the policy. Therefore, although
the agent actually visit a very small portion of the states
online, it indeed considers all the states when training the
Q values table based on stored data. In our experiment,
to make the batch training explore more states, we set
its rate as 0.1. To avoid too many fluctuations after the
convergence, we set the online learning exploration rate
0.05.

We have to accept that our algorithm can not guarantee
to find the global optimal configuration. Due to the perfor-
mance consideration, the agent can not explore too many
sates. The gap between real system performance and our
initial predicted one sometimes make the agent inaccurate.
In Figure 9, we study the performance of different online
learning exploration. We used three exploration rates: 0.05,
0.1 and 0.3. From the figure, we can see that the perfor-
mance of the convergence states for different exploration
rates were nearly the same. But, the high exploration rate
caused more than one response time spikes within 30
iterations. The result shows the rate 0.05 performed best.
The goal of our RL based agent is to direct the system to
a good configuration according to the system SLA. Setting
a vary high online exploration to find the global optimal



Fig. 9. Agent performance due to different
online exploration rates.

state is not practical and causes huge performance penalty
during online searching.

VI. Related Work

Many past works were devoted to autonomic configu-
ration of web systems; see [19], [7], [17], [2], [5], [18] for
examples. Xi et al. [17] and Zhang et al. [18] applied Hill-
climbing algorithms to search optimal configurations for
application servers by adjusting a small number of param-
eters. They treated the system as a black-box and assumed
that the application tier configurations were independent
of other tiers.

Actually, the configurations for interconnected web
system components interfere with each other. In [19],
Zheng et al employed a CART algorithm to generate
the parameter dependency graph through a three tier web
system, which explicitly represented relationship between
configurable parameters. Chung et al. demonstrated that
the performance improvement cannot easily be achieved
by tuning individual component of web system [2]. These
two works suggested to construct performance functions of
parameters in a direct approach so as to tune the parameters
by optimizing the functions. However, the huge number of
initial testings made their works not applicable to online
adaptations.

In [5], Liu et al. proposed a fuzzy control based
algorithm to online optimize response time of a web server.
Zhang et al. [18] developed a online tuning agent to recon-
figure the application sever according to system variations.
However, the inherent complexity of the control approach
considerably limited capacity of their auto-configuration
method. Therefore, both of these works limited themselves
to the tuning of single parameter of single tier applications.

Moreover, the traditional hill-climbing and control ap-
proaches require system knowledge and suffer from delay
consequences. The RL algorithm inherently avoid such
problems by taking the long term rewards. Several works
have employed reinforcement learning in other contexts.
Tesauro et al. applied a hybrid reinforcement learning
algorithm to optimize server resource allocation in a
server farm [15]. Also a reinforcement learning based self-
optimizing memory controller was designed in work [4].
To avoid the poor initial performance, function approx-
imation and coarse-grain Q value table were adopted
separately in these two works. In this work, we used typical
data collection and pre-learning to solve this problem.

There were other works on autonomic configuration in
virtual machines. Padala et al. applied classical control the-
ory to auto-configure the resource shares allocated to each
VM in order to increase resource utilization [8]. In [11],

an VM advisor automatically configured VMs to adapt to
different database workloads. What they focused on was
resource configurations of VMs, which complements to the
work in this paper on web systems configuration under
VM-based dynamic platforms.

VII. Conclusion

In this paper, we propose a reinforcement learning
approach, namely RAC, towards automatic configurations
of multi-tier web systems in VM-based dynamic environ-
ment. To avoid initial learning overhead, we equip our
RL algorithm with efficient heuristic initialization policies.
Experiments in a multi-tier web system showed that RAC
is applicable to online system configuration adaptation
in the presence of variations in both workload and VM
resources. It is able to direct the web system to a near-
optimal configuration within less than 25 trial-and-error
iterations .

Although our RL-based auto-configuration agent per-
formed well in the experiments, it still has room for
improvement. First, the quality of collected data and
accuracy of the predictor will affect the agent’s online
performance. Designing a more accurate initial model
or function approximation is one of our future extended
work. Furthermore, due to the presence of policy shifting
delay, our agent still suffer a short period of initial poor
performance. A quicker adaptive auto-configuration agent
is expected to lead to better performance.
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