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Abstract

This paper proposes a neural network based
reinforcement learning controller that is able
to learn control policies in a highly data ef-
ficient manner. This allows to apply rein-
forcement learning directly to real plants -
neither a transition model nor a simulation
model of the plant is needed for training.
The only training information provided to
the controller are transition experiences col-
lected from interactions with the real plant.
By storing these transition experiences ex-
plicitly, they can be reconsidered for updat-
ing the neural Q-function in every training
step. This results in a stable learning pro-
cess of a neural Q-value function. The algo-
rithm is applied to learn the highly nonlinear
and noisy task of swinging-up and balancing
a real inverted pendulum. The amount of
real time interaction needed to learn a highly
effective policy from scratch was less than 14
minutes.

1. Introduction

When addressing interesting Reinforcement Learning
(RL) problems in real world applications, one sooner
or later faces the problem of an appropriate method
to represent the value function. Neural networks, in
particular multi-layer perceptrons, offer an interesting
perspective due to their ability to approximate non-
linear functions. Although a lot of successful applica-
tions exist [10, 5, 7], also a lot of problems have been
reported [1]. Many of these problems arise, since the
representation mechanism in a multi-layer perceptron

is not local, but global: A weight change induced by
an update in a certain part of the state space might
influence the values in arbitrary other regions - and
therefore destroy the effort done so far in other re-
gions. This leads to typically very long learning times
or even to the failure of learning. On the other hand,
a global representation scheme can in principle have
a very positive effect: by assigning similar values to
related areas, it can exploit generalisation effects and
therefore accelerate learning considerably.

Therefore the question is: how can we exploit the pos-
itive properties of a global approximation realized in
a multi-layer perceptron while avoiding the negative
ones? One key access to this question is that we need
to constrain the malificious influence of a new update
of the value function in a multi-layer perceptron. The
principle idea that underlies our approach is simple:
we have to make sure, that at the same time we make
an update at a new datapoint, we also offer previous
knowledge explicitly. Here, we implement this idea by
storing all previous experiences in terms of state-action
transitions in memory. This data is then reused every
time the neural Q-function is updated.

The algorithm proposed belongs to the family of fit-
ted value iteration algorithms [3]. They can be seen as
a special form of the ’experience replay’ technique [5],
where value iteration is performed on all transition ex-
periences seen so far. Recently, several algorithms have
been introduced in this spirit of batch or off-line Re-
inforcement Learning, e.g. LSPI [4]. Our method is a
special realisation of the ’Fitted Q Iteration’, recently
proposed by Ernst et.al [2]. Whereas Ernst et.al ex-
amined tree based regression methods, we propose the
use of multilayer-perceptrons with an enhanced weight
update method. Our method is therfore called ’Neural
Fitted Q Iteration’ (NFQ). In particular, we want to
stress the following important properties of NFQ:



• the method is model-free. The only information
required from the plant are transition triples of
the form (state, action, successor state).

• learning of successful policies is possible with rel-
atively few training examples (data efficiency).
This enables the learning algorithm to directly
learn from real world interactions.

• although requiring much less knowledge about the
plant than analytical controllers, the method is
able to find control policies, that are able to com-
pare well to handcrafted controllers.

2. Main idea

2.1. Markovian Decision Processes

The control problems considered in this paper can be
described as Markovian Decision Processes (MDPs).
An MDP is described by a set S of states, a set A of
actions, a stochastic transition function p(s, a, s′) de-
scribing the (stochastic) system behavior and an im-
mediate reward or cost function c : S × A → R. The
goal is to find an optimal policy π∗ : S → A, that min-
imizes the expected cumulated costs for each state. In
particular, we allow S to be continuous, assume A to
be finite for our learning system, and p to be unknown
to our learning system (model-free approach). Deci-
sions are taken in regular time steps with a constant
cycle time.

2.2. Classical Q-learning

In classical Q-learning, the update rule is given by

Qk+1(s, a) := (1−α)Q(s, a)+α(c(s, a)+γ min
b

Qk(s′, b))

where s denotes the state where the transition starts,
a is the action that is applied, and s′ is the resulting
state. α is a learning rate that has to be decreased in
the course of learning in order to fulfill the conditions
of stochastic approximation and γ is a discounting fac-
tor (see e.g. [9]). It can be shown, that under mild
assumptions Q-learning converges for finite state and
action spaces, as long as every state action pair is up-
dated infinitely often. Then, in the limit, the optimal
Q-function is reached.

Typically, the update is performed on-line in a sample-
by-sample manner, that is, every time a new transition
is made, the value function is updated.

2.3. Q-learning for neural networks

In principle, the above Q-learning rule can be di-
rectly implemented in a neural network. Since no

direct assignment of Q-values like in a table based
representation can be made, instead, an error func-
tion is introduced, that aims to measure the differ-
ence between the current Q-value and the new value
that should be assigned. For example, a squared-
error measure like the following can be used: error =
(Q(s, a)−(c(s, a)+minb Q(s′, b)))2. At this point, com-
mon gradient descent techniques (like the ’backprop-
agation’ learning rule) can be applied to adjust the
weights of a neural network in order to minimize the
error. Like above, this update rule is typically applied
after each new sample.

The problem with this on-line update rule is, that typi-
cally, several ten thousands of episodes have to be done
until an optimal or near optimal policy has been found
[7]. One reason for this is, that if weights are adjusted
for one certain state action pair, then unpredictable
changes also occur at other places in the state-action
space. Although in principle this could have a positive
effect (generalisation), from our experience this seems
to be one of the main reasons for unreliable and slow
learning.

3. Neural Fitted Q Iteration (NFQ)

3.1. Basic Idea

The basic idea underlying NFQ is the following: In-
stead of updating the neural value function on-line
(which leads to the problems described in the previous
section), the update is performed off-line considering
an entire set of transition experiences. Experiences
are collected in triples of the form (s, a, s′) by inter-
acting with the (real or simulated) system1. Here, s
is the original state, a is the chosen action and s′ is
the resulting state. The set of experiences is called the
sample set D.

The consideration of the entire training information
instead of on-line samples, has an important further
consequence: It allows the application of advanced su-
pervised learning methods, that converge faster and
more reliably than online gradient descent methods.
Here we use Rprop [8], a supervised learning method

1Note that often experiences are collected in four-tuples
with the additional entry denoting the immediate costs or
reward from the environment. Since we take an engineering
view of the learning problem, we think of the immediate
costs as something being specified by the designer of the
learning system rather than something that occurs natu-
rally in the environment and can only be observed. There-
fore, costs come in at a later point and also potentially can
be changed without collecting further experiences. How-
ever, the basic working of the algorithm is not touched by
this.



NFQ main() {
input: a set of transition samples D;
output: neural Q-value function QN

k=0
init MLP() → Q0;
Do {

generate pattern set
P = {(inputl, targetl), l = 1, . . . , #D} where:

inputl = sl, ul,
targetl = c(sl, ul, s′l) + γ minbQk(s′l, b)

Rprop training(P ) → Qk+1

k:= k+1
} While (k < N)

Figure 1. Main loop of NFQ .

for batch learning, which is known to be very fast and
very insensitive with respect to the choice of its learn-
ing parameters. The latter fact has the advantage,
that we do not have to care about tuning the parame-
ters for the supervised learning part of the overall (RL)
learning problem.

3.2. The NFQ -algorithm

NFQ is an instance of the Fitted Q Iteration family of
algorithms proposed by Ernst et al. [2], where the re-
gression algorithm is realized by a multi-layer percep-
tron. The algorithm is displayed in figure 1. It consists
of two major steps: The generation of the training set
P and the training of these patterns within a multi-
layer perceptron. The input part of each training pat-
tern consists of the state sl and action al of training
experience l. The target value is computed by the
sum of the transition costs c(sl, al, sl+1) and the ex-
pected minimal path costs for the successor state s′l,
computed on the basis of the current estimate of the
Q−function, Qk.

Since at this point, training the Q-function can be done
as batch learning of a fixed pattern set, we can use
more advanced supervised learning techniques, that
converge more quickly and more reliably than ordinary
gradient descent techniques. In our implementation,
we use the Rprop algorithm for fast supervised learn-
ing [8]. The training of the pattern set is repeated for
several epochs (=complete sweeps through the pattern
set), until the pattern set is learned succesfully.

3.3. Sample setting of costs

Here, we will give an example setting of the immedi-
ate cost structure, which can be used in many typical
reinforcement learning settings. We find it useful to

use a more or less standardized procedure to setup the
learning problem, but we want to stress that NFQ is
by no means tailored to this type of cost function, but
works with arbitrary cost structures.

In the following, we denote the set of goal states X+,
the set of forbidden states are denoted by X−. X+

therefore denotes the region, where the system should
finally be controlled to (and in case of a regulator prob-
lem, should be kept in), and X− denotes regions in
state space, that must be avoided by a correct control
policy.

Within this setting, the generation of training patterns
is modified as follows:

targetl =







c(sl, ul, s′l), if s′l ∈ X+

R−, if s′l ∈ X−

c(sl, ul, s′l) + γ minbQk(s′l, b), else
(1)

Setting c(sl, ul, s′l) to a positive constant value ctrans

(e.g ctrans = 0.01) means to aim for a minimum-time
controller. In technical process control, this is often
desirable, and therefore we choose this setting in the
following. R− is set to 1.0, since this is the maxi-
mum output value of the multi-layer perceptron that
we use. In regulator problems (see section 4.6), reach-
ing a goal state does not terminate the episode. There-
fore, the first line in the above equation must not be
applied. Instead, only line 2 and 3 are executed and
c(sl, ul, s′l) = 0, if s′l ∈ X+ and c(sl, ul, s′l) = ctrans,
otherwise.

Note that due to its purity, this setting is widely appli-
cable and no prior knowledge about the environment
(e.g. shaping information like distance to the goal,
etc.) is required.

3.4. Variants

Several variants can be applied to the basic algorithm.
In particular, for the experiments in section 4 we used
a version, where we incrementally add transitions to
the experience set. This is especially useful in situ-
ations, where a reasonable set of experiences can not
be collected by controlling the system with purely ran-
dom actions. Instead, training samples are collected by
greedily exploiting the current Qk function and added
to the sample set D.

Another heuristic that we found helpful, is to add ’ar-
tificial’ training patterns from the goal region, which
have a known target value of 0. This technique
’clamps’ the neural value function to zero in the
goal region, and we therefore call it the hint-to-goal-



Figure 2. Hardware used. The pole is mounted on the axis
of a DC motor. The pole angle is sensed by an encoder
attached to the motor. The DC motor is controlled by
PWM signals.

heuristic. Note that no additional prior knowledge is
required to generate the patterns, since the goal region
is already known in the task specification.

4. Swing-Up and Balancing of a Real
Pole

All experiments are done using CLS2 (’clsquare’)2,
a software system designed to benchmark (not only)
RL controllers on a wide variety of simulated and real
plants.

4.1. System Description

The system consists of a pole mounted on the axis of
a DC motor (see figure 2). The control signal is given
as a PWM signal to the motor. As input information,
the controller gets the pole angle, which is sensed by
an encoder attached to the motor, and the angular
velocity, which is approximated by the difference of
two consecutive angular values. The control interval
used is 4t = 0.1s.

4.2. Swing-up task

The swing-up task is to bring the pole from a hang-
down into an upright position, i.e. the target value for
the pole angle is 0 ± 0.3rad. The pole always starts
from a hang-down position, with a pole angle of +π.
Note that in the hang-down position, there is a discon-
tinuity in the angular values: moving the pole a bit to
the left or to the right makes the angular value jump

2freely available at clss.sf.net

from a value of +π to a value of −π respectively. This
additional difficulty could for example be resolved by
switching to another representation of the sensor sig-
nal. However, according to our philosophy to incorpo-
rate as few hand-crafted features as possible into the
controller setup, we expect our learning system to be
able to cope with this additional difficulty.

The maximum allowed PWM signals are not sufficient
to bring the pole up directly. Instead, a succesful con-
trol policy has to move the pole back and forth several
times, in order to bring more and more kinetic en-
ergy into the system such that the pole finally can be
brought upright.

The performance measure for a controller is the aver-
age time needed to get the pole to the top (θ = 0)
from the initial hang-down position (θ = π).

As a reference for controller performance, we generated
a hand-crafted policy, that always changes the control
signal sign, whenever the angular velocity of the pole
gets below a certain value. This turns out to be a
pretty effective policy. To get the pole up, it required
about 3.4 seconds.

The swingup task is a challenging control task for RL,
in some sense similar to the popular mountain car
benchmark, a simulated system often used to compare
RL algorithms.

4.3. Learning system setup

Input to the learning controller is the raw and con-
tinuous valued state information of angle and angular
velocity. While the angle can be directly measured,
the velocity is approximated by the difference of con-
secutive angle measurements. Two actions are avail-
able to the learning controller, a positive PWM sig-
nal of +30 that turns the motor right and a negative
PWM signal of −30 that turns the motor left. The Q-
value function is represented by a multi-layer percep-
tron with 3 inputs (two state variables and one control
signal), 2 hidden layers with 5 neurons each, and one
output neuron, all equiped with sigmoidal activation
functions. The weights of the network were randomly
initialized within [−0.5, 0.5]. The hint-to-goal heuris-
tic was used. For the specification of the learning task,
the (standard) framework of the immediate cost func-
tion from section 3.3 was used with ctrans = 0.01. No
further training information like e.g. shaping was pro-
vided to the learning system. For training the neural
Q-function, 1000 epochs of batch learning were per-
formed using the Rprop learning algorithm with de-
fault parameters [8].



4.4. Acquisition of transition experiences

An important question when directly learning by in-
teraction with the real systems is, how can we collect
an ’informative’ set of transition experiences (i.e. the
sample set D)? In a real system, we typically can not
set and experience arbitrary transitions, like we could
do in a simulated plant.

In the following experiments, we follow the strategy
of ’greedy acquisition’, always starting from one initial
state: the natural position for the pole is to hang down,
therefore this initial state can always be taken by the
plant without human interaction. Therefore, all the
episodes for training are started from the hang down
position. Starting from this inital position, the system
is then controlled by greedily exploiting the current
Q-value function. Each such episode delievers a set of
new potential entries to the sample set D. For reasons
of efficiency of learning time, we disregarded multiple
entries of the same transition.

It is clear, that at the beginning, when the neural Q-
value function is randomly initialized, no successful
episodes can be expected. But in the course of learn-
ing, more and more succesful episodes are observed.
Each trainining episode had a maximum length of 50
cycles (corresponding to 5s). If the pole reached its
target, the episode was stopped. This procedure was
done for a maximum of 300 episodes. In fact, it turned
out that much less episodes were enough to learn suc-
cessful policies.

4.5. Results

The learning experiments were repeated for 10 times.
The following reports the average figures. The first
successful episode that brought the pole up to the tar-
get region was already observed after only 28 episodes
in average (meaning 28 ∗ 50 ∗ 0.1 = 140 seconds of
interaction with the real plant). In average, the first
successful policies needed 3.2 seconds to bring up the
pole from the hang-down position.

For doing the total of 300 episodes that were run dur-
ing the training phase, less than 14 minutes (7850 cy-
cles ∗0.1s/cycle) of real time interaction with the plant
were required. This stresses the claim, that the NFQ
framework makes very efficient use of its training ex-
perience. Also, the controller performance was highly
satisfiable: the best controller found needed only 2 sec-
onds to swing-up the pole, which is significantly better
than the already well-performing hand-crafted policy.
The very effective behaviour of the controller is shown
in figure 3.
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Figure 3. Swingup and balance task. Behaviour of con-
trolled pole angle over time. The values plotted correspond
to the inputs to the learning controller. After about 2 sec-
onds, the controller has brought the pole upright and keeps
it balanced.

4.6. Swing-up and balance

One big advantage of NFQ is, that once the transition
experiences are collected, they can be reused to learn
different tasks for the same plant without any further
interaction with the plant. This is due to the fact,
that within the NFQ approach, learning the controller
itself is done completely offline, i.e. the core learning
process requires only ’appropriate’ transition samples
- and does not necessarily rely on a direct interaction
with the plant.

To demonstrate this capability, we applied this method
to the more challenging swing-up and balance task of
the real pole. This task requires to swing-up the pole
like before, but additonally to avoid a turn-over and to
appropriately balance the pole in the upright position.
Balancing is especially difficult, since a PWM signal of
0 is not available to the learning controller - meaning
that even with a perfect policy, the pole is permanently
pushed away from its stable upright position.

Balancing the pole appropriately with the coarse bang-
bang actions of ±30 requires a shorter control interval
than in the swing-up case, where a control interval of
4t = 0.1s was sufficient. Fortunately, data collection
on a finer control interval is always possible for free,
and was done in the swing-up experiment. Therefore,
data for a finer control interval of δt = 0.025 is avail-
able, and can be used to learn the more complicated
task of swing-up and balance the pole.

To learn the new controller, only the learning goal has
to be reformulated: we now face a regulator task. In



particular, we choose c(s, a) = 0, if the angle of s is
within ±.05 rad and c(s, a) = ctrans = 0.01 for all
other states. There is a subtle difference to the formu-
lation in 3.3 by the fact that for s ∈ X+, no final re-
ward is given, since in a regulator problem the episode
is not terminated when the state reaches X+ (see [7]
for a detailed discussion of this framework). Instead,
the controller has to learn the much more difficult task
to actively keep the system within the cost-free target
region.

Since transition samples are reused from the swing-
up task, no further interaction with the real plant is
required. Starting with a randomly initialized neu-
ral network, the controller learned a perfect swingup
and balance behaviour after about 100 iterations of
the NFQ algorithm (see figure 3). The final controller
needs about 2 seconds to bring up the pole and then
kept the pole regulated perfectly in the upright posi-
tion.

5. Further Results

More experiments using the new NFQ framework have
recently been done on simulated plants. NFQ has been
evaluated on a simulated pole problem [4], on the clas-
sical mountain car [6] and a challenging cart-pole reg-
ulator problem. In all benchmarks, NFQ performed
amazingly well. The training experiences required to
learn highly competitive policies could be collected in
less than 10 minutes of corresponding real time in-
teraction for all three benchmarks.The results will be
published soon in a forthcoming paper.

6. Conclusion

The paper proposes NFQ , a memory based method
to train neural Q-value functions based on multi-layer
perceptrons. By storing and reusing all transition ex-
periences, the neural learning process can be made
very data efficient and reliable. Additionally, by allow-
ing for batch supervised learning in the core of adapta-
tion, advanced supervised learning techniques can be
applied that provide reliable and quick convergence of
the supervised learning part of the problem. NFQ al-
lows to exploit the positive effects of generalisation in
multi-layer perceptrons while avoiding their negative
effects of disturbing previously learned experiences.

The exploitation of generalisation leads to highly data
efficient learning. This is shown in the pole swing-up
and balance task using a real system. The amount
of training experience required for learning successful
policies is considerably low, whereas the resulting pol-
icy is highly effective.
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